Environmental Microorganism Classification Using Conditional Random Fields and Deep Convolutional Neural Networks
Sergey Kosov, Kimiaki Shirahama, Chen Li and Marcin Grzegorzek
University of Siegen (Germany), Northeastern University (China) and University of Economics in Katowice (Poland)
Abstract
The labeling of Environmental Microorganisms (EM) which help decomposing pollutants, plays a fundamental role for establishing sustainable ecosystem. We propose an environmental microorganism classification engine that can automatically analyze microscopic images using Conditional Random Fields (CRF) and Deep Convolutional Neural Networks (DCNN). First, to effectively represent scarce training images, a DCNN pre-trained for image classification using a large amount of data is re-purposed to our feature extractor that distils pixel level features in microscopic images. In addition, pixel-level classification results by such features can be refined using global features that describe the whole image in toto. Finally, our CRF model localizes and classifies EMs by considering the spatial relations among DCNN-based features, and their relations to global features. The experimental results have shown 94.2% of overall segmentation accuracy and up to 91.4% mean average precision of the results.
An overview of our CRF-based EM classification and segmentation framework.
Downloads
A more general implementation of the project is available for download. The code is under BSD license, feel free to use and modify it. We’re happy to hear about applications of this research, please send us an email if you use the code. If you use it for a publication, please cite our paper. If you think you found a bug in the code, please let us know as well. We can also provide assistance with installing, understanding, or running the code.