1 #include "TrainEdgePrior.h" virtual void loadFile(FILE *pFile)
Loads the random model from the file.
virtual ~CTrainEdgePrior(void)
Contrast-Sensitive Potts training class.
void addEdgeGroundTruth(byte gt1, byte gt2)
Adds the groud-truth value to the co-occurance histogram matrix.
Base abstract class for random model training.
virtual void reset(void)
Resets class variables.
void reset(void)
Resets class variables.
virtual void saveFile(FILE *pFile) const
Saves the random model into the file.
Mat getPrior(float weight=1.0f) const
Returns the prior probabilies.
CTrainEdgePrior(byte nStates, word nFeatures, ePotPenalApproach penApproach=eP_APP_PEN_EXP, ePotNormApproach normApproach=eP_APP_NORM_SYMMETRIC)
Constructor.
Edge prior probability estimation class.
virtual void loadFile(FILE *pFile)
Loads the random model from the file.
virtual Mat calculateEdgePotentials(const Mat &featureVector1, const Mat &featureVector2, const vec_float_t &vParams) const
Calculates the edge potential, based on the feature vectors.
ePotPenalApproach
Penalization approach flag.
virtual void addFeatureVecs(const Mat &featureVector1, byte gt1, const Mat &featureVector2, byte gt2)
Adds a pair of feature vectors.
virtual void train(bool doClean=false)
Random model training.
virtual void saveFile(FILE *pFile) const
Saves the random model into the file.
ePotNormApproach
Normalization approach flag.
virtual Mat calculateEdgePotentials(const Mat &featureVector1, const Mat &featureVector2, const vec_float_t &vParams) const
Returns the contrast-sensitive edge potentials.
void loadPriorMatrix(void)