9 class CSamplesAccumulator;
21 TrainNodeCvGMMParams(word _numGausses,
int _covariance_matrix_type,
int _maxCount,
double _epsilon,
int _term_criteria_type,
int _maxSamples) :
numGausses(_numGausses),
covariance_matrix_type(_covariance_matrix_type),
maxCount(_maxCount),
epsilon(_epsilon),
term_criteria_type(_term_criteria_type),
maxSamples(_maxSamples) {}
26 ml::EM::COV_MAT_DIAGONAL,
29 TermCriteria::MAX_ITER | TermCriteria::EPS,
61 DllExport
void reset(
void);
62 DllExport
void save(
const std::string &path,
const std::string &name = std::string(),
short idx = -1)
const;
63 DllExport
void load(
const std::string &path,
const std::string &name = std::string(),
short idx = -1);
65 DllExport
void addFeatureVec(
const Mat &featureVector, byte gt);
67 DllExport
void train(
bool doClean =
false);
void addFeatureVec(const Mat &featureVector, byte gt)
Adds new feature vector.
void init(TrainNodeCvGMMParams params)
void load(const std::string &path, const std::string &name=std::string(), short idx=-1)
Loads the training data.
int term_criteria_type
Termination cirteria type (according the the two previous parameters)
virtual ~CTrainNodeCvGMM(void)
void reset(void)
Resets class variables.
void saveFile(FILE *pFile) const
Saves the random model into the file.
word numGausses
The number of Gauss functions for approximation.
size_t maxSamples
Maximum number of samples to be used in training. 0 means using all the samples.
const TrainNodeCvGMMParams TRAIN_NODE_CV_GMM_PARAMS_DEFAULT
static const double MIN_COEFFICIENT_BASE
int covariance_matrix_type
Type of the covariance matrix.
void loadFile(FILE *pFile)
Loads the random model from the file.
std::vector< Ptr< ml::EM > > m_vpEM
Expectation Maximization for GMM parameters estimation.
void calculateNodePotentials(const Mat &featureVector, Mat &potential, Mat &mask) const
Calculates the node potential, based on the feature vector.
int maxCount
Max number of iterations.
CTrainNodeCvGMM(byte nStates, word nFeatures, TrainNodeCvGMMParams params=TRAIN_NODE_CV_GMM_PARAMS_DEFAULT)
Constructor.
long double m_minCoefficient
Samples accumulator abstract class.
void train(bool doClean=false)
Random model training.
void save(const std::string &path, const std::string &name=std::string(), short idx=-1) const
Saves the training data.
double epsilon
GMM accuracy.
CSamplesAccumulator * m_pSamplesAcc
Samples Accumulator.
Base abstract class for node potentials training.
OpenCV Gaussian Mixture Model training class.
TrainNodeCvGMMParams(word _numGausses, int _covariance_matrix_type, int _maxCount, double _epsilon, int _term_criteria_type, int _maxSamples)
struct DirectGraphicalModels::TrainNodeCvGMMParams TrainNodeCvGMMParams
OpenCV Random Forest parameters.
OpenCV Random Forest parameters.