Direct Graphical Models
v.1.7.0
|
OpenCV Random Forest parameters. More...
#include <TrainNodeCvRF.h>
Public Member Functions | |
TrainNodeCvRFParams () | |
TrainNodeCvRFParams (int _max_depth, int _min_sample_count, float _regression_accuracy, bool _use_surrogates, int _max_categories, bool _calc_var_importance, int _nactive_vars, int _maxCount, double _epsilon, int _term_criteria_type, size_t _maxSamples) | |
Public Attributes | |
int | max_depth |
Max depth. More... | |
int | min_sample_count |
Min sample count (1% of all data) More... | |
float | regression_accuracy |
Regression accuracy (0 means N/A here) More... | |
bool | use_surrogates |
Compute surrogate split, no missing data. More... | |
int | max_categories |
Max number of categories (use sub-optimal algorithm for larger numbers) More... | |
bool | calc_var_importance |
Calculate variable importance (must be true in order to use CTrainNodeCvRF::getFeatureImportance function) More... | |
int | nactive_vars |
Number of variables randomly selected at node and used to find the best split(s). (0 means the \( \sqrt{nFeatures} \)) More... | |
int | maxCount |
Max number of trees in the forest (time / accuracy) More... | |
double | epsilon |
Forest accuracy. More... | |
int | term_criteria_type |
Termination cirteria type (according the the two previous parameters) More... | |
size_t | maxSamples |
Maximum number of samples to be used in training. 0 means using all the samples. More... | |
OpenCV Random Forest parameters.
Definition at line 13 of file TrainNodeCvRF.h.
|
inline |
Definition at line 26 of file TrainNodeCvRF.h.
|
inline |
Definition at line 27 of file TrainNodeCvRF.h.
bool DirectGraphicalModels::TrainNodeCvRFParams::calc_var_importance |
Calculate variable importance (must be true in order to use CTrainNodeCvRF::getFeatureImportance function)
Definition at line 19 of file TrainNodeCvRF.h.
double DirectGraphicalModels::TrainNodeCvRFParams::epsilon |
Forest accuracy.
Definition at line 22 of file TrainNodeCvRF.h.
int DirectGraphicalModels::TrainNodeCvRFParams::max_categories |
Max number of categories (use sub-optimal algorithm for larger numbers)
Definition at line 18 of file TrainNodeCvRF.h.
int DirectGraphicalModels::TrainNodeCvRFParams::max_depth |
Max depth.
Definition at line 14 of file TrainNodeCvRF.h.
int DirectGraphicalModels::TrainNodeCvRFParams::maxCount |
Max number of trees in the forest (time / accuracy)
Definition at line 21 of file TrainNodeCvRF.h.
size_t DirectGraphicalModels::TrainNodeCvRFParams::maxSamples |
Maximum number of samples to be used in training. 0 means using all the samples.
Definition at line 24 of file TrainNodeCvRF.h.
int DirectGraphicalModels::TrainNodeCvRFParams::min_sample_count |
Min sample count (1% of all data)
Definition at line 15 of file TrainNodeCvRF.h.
int DirectGraphicalModels::TrainNodeCvRFParams::nactive_vars |
Number of variables randomly selected at node and used to find the best split(s). (0 means the \( \sqrt{nFeatures} \))
Definition at line 20 of file TrainNodeCvRF.h.
float DirectGraphicalModels::TrainNodeCvRFParams::regression_accuracy |
Regression accuracy (0 means N/A here)
Definition at line 16 of file TrainNodeCvRF.h.
int DirectGraphicalModels::TrainNodeCvRFParams::term_criteria_type |
Termination cirteria type (according the the two previous parameters)
Definition at line 23 of file TrainNodeCvRF.h.
bool DirectGraphicalModels::TrainNodeCvRFParams::use_surrogates |
Compute surrogate split, no missing data.
Definition at line 17 of file TrainNodeCvRF.h.