Direct Graphical Models  v.1.7.0
DirectGraphicalModels::CTrainNodeBayes Member List

This is the complete list of members for DirectGraphicalModels::CTrainNodeBayes, including all inherited members.

addFeatureVec(const Mat &featureVector, byte gt)DirectGraphicalModels::CTrainNodeBayesvirtual
addFeatureVecs(const Mat &featureVectors, const Mat &gt)DirectGraphicalModels::CTrainNode
addFeatureVecs(const vec_mat_t &featureVectors, const Mat &gt)DirectGraphicalModels::CTrainNode
addNodeGroundTruth(const Mat &gt)DirectGraphicalModels::CPriorNodeprivate
addNodeGroundTruth(byte gt)DirectGraphicalModels::CPriorNodeprivate
calculateNodePotentials(const Mat &featureVector, Mat &potential, Mat &mask) constDirectGraphicalModels::CTrainNodeBayesprotectedvirtual
calculatePrior(void) constDirectGraphicalModels::CPriorNodeprivatevirtual
CBaseRandomModel(byte nStates)DirectGraphicalModels::CBaseRandomModelinline
CPrior(byte nStates, RandomModelType type)DirectGraphicalModels::CPriorprivate
CPriorNode(byte nStates)DirectGraphicalModels::CPriorNodeinlineprivate
create(byte nodeRandomModel, byte nStates, word nFeatures)DirectGraphicalModels::CTrainNodestatic
CTrainNode(byte nStates, word nFeatures)DirectGraphicalModels::CTrainNodeinline
CTrainNodeBayes(byte nStates, word nFeatures)DirectGraphicalModels::CTrainNodeBayes
generateFileName(const std::string &path, const std::string &name, short idx) constDirectGraphicalModels::CBaseRandomModelprotected
getNodePotentials(const Mat &featureVectors, const Mat &weights=Mat(), float Z=0.0f) constDirectGraphicalModels::CTrainNode
getNodePotentials(const vec_mat_t &featureVectors, const Mat &weights=Mat(), float Z=0.0f) constDirectGraphicalModels::CTrainNode
getNodePotentials(const Mat &featureVector, float weight, float Z=0.0f) constDirectGraphicalModels::CTrainNode
getNumFeatures(void) constDirectGraphicalModels::ITraininline
getNumStates(void) constDirectGraphicalModels::CBaseRandomModelinline
getPDF(byte state, word feature) constDirectGraphicalModels::CTrainNodeBayesinline
getPDF2D(byte state) constDirectGraphicalModels::CTrainNodeBayesinline
getPrior(float weight=1.0f) constDirectGraphicalModels::CPriorprivate
ITrain(byte nStates, word nFeatures)DirectGraphicalModels::ITraininline
load(const std::string &path, const std::string &name=std::string(), short idx=-1)DirectGraphicalModels::CBaseRandomModelvirtual
loadFile(FILE *pFile)DirectGraphicalModels::CTrainNodeBayesprotectedvirtual
m_histogramPriorDirectGraphicalModels::CPriorprivate
m_nStatesDirectGraphicalModels::CBaseRandomModelprotected
m_pPDFDirectGraphicalModels::CTrainNodeBayesprivate
m_pPDF2DDirectGraphicalModels::CTrainNodeBayesprivate
m_priorDirectGraphicalModels::CTrainNodeBayesprivate
reset(void)DirectGraphicalModels::CTrainNodeBayesvirtual
save(const std::string &path, const std::string &name=std::string(), short idx=-1) constDirectGraphicalModels::CBaseRandomModelvirtual
saveFile(FILE *pFile) constDirectGraphicalModels::CTrainNodeBayesprotectedvirtual
smooth(int nIt=1)DirectGraphicalModels::CTrainNodeBayes
train(bool doClean=false)DirectGraphicalModels::CTrainNodeBayesvirtual
~CBaseRandomModel(void)DirectGraphicalModels::CBaseRandomModelinlinevirtual
~CPrior(void)DirectGraphicalModels::CPriorprivate
~CPriorNode(void)DirectGraphicalModels::CPriorNodeinlineprivate
~CTrainNode(void)=defaultDirectGraphicalModels::CTrainNodevirtual
~CTrainNodeBayes(void)DirectGraphicalModels::CTrainNodeBayesvirtual
~ITrain(void)=defaultDirectGraphicalModels::ITrainvirtual