Interface class for random model training.
More...
#include <ITrain.h>
|
virtual void | saveFile (FILE *pFile) const =0 |
| Saves the random model into the file. More...
|
|
virtual void | loadFile (FILE *pFile)=0 |
| Loads the random model from the file. More...
|
|
std::string | generateFileName (const std::string &path, const std::string &name, short idx) const |
| Generates name of the data file for storing random model parameters. More...
|
|
byte | m_nStates |
| The number of states (classes) More...
|
|
Interface class for random model training.
- Author
- Sergey G. Kosov, serge.nosp@m.y.ko.nosp@m.sov@p.nosp@m.roje.nosp@m.ct-10.nosp@m..de
Definition at line 15 of file ITrain.h.
◆ ITrain()
DirectGraphicalModels::ITrain::ITrain |
( |
byte |
nStates, |
|
|
word |
nFeatures |
|
) |
| |
|
inline |
Constructor.
- Parameters
-
nStates | Number of states (classes) |
nFeatures | Number of features |
Definition at line 23 of file ITrain.h.
◆ ~ITrain()
virtual DirectGraphicalModels::ITrain::~ITrain |
( |
void |
| ) |
|
|
virtualdefault |
◆ getNumFeatures()
word DirectGraphicalModels::ITrain::getNumFeatures |
( |
void |
| ) |
const |
|
inline |
Returns number of features.
- Returns
- Number of features
Definition at line 37 of file ITrain.h.
◆ train()
virtual void DirectGraphicalModels::ITrain::train |
( |
bool |
doClean = false | ) |
|
|
pure virtual |
Random model training.
Auxilary function for training - some derived classes may use this function inbetween training and classification phases
- Note
- This function must be called inbetween the training and classification phases
- Parameters
-
doClean | Flag indicating if the memory, keeping the trining data should be released after training |
Implemented in DirectGraphicalModels::CTrainNode, DirectGraphicalModels::CTrainNodeMsRF, DirectGraphicalModels::CTrainEdgeConcat< Trainer, Concatenator >, DirectGraphicalModels::CTrainNodeCvRF, DirectGraphicalModels::CTrainLinkNested< Trainer >, DirectGraphicalModels::CTrainNodeCvANN, DirectGraphicalModels::CTrainNodeCvGMM, DirectGraphicalModels::CTrainNodeCvSVM, DirectGraphicalModels::CTrainNodeKNN, DirectGraphicalModels::CTrainNodeCvKNN, DirectGraphicalModels::CTrainNodeGMM, DirectGraphicalModels::CTrainLink, DirectGraphicalModels::CTrainEdge, DirectGraphicalModels::CTrainNodeBayes, DirectGraphicalModels::CTrainEdgePrior, and DirectGraphicalModels::CTrainTriplet.
◆ m_nFeatures
word DirectGraphicalModels::ITrain::m_nFeatures |
|
private |
The number of features (length of the feature vector)
Definition at line 41 of file ITrain.h.
The documentation for this class was generated from the following file: