![]() |
Direct Graphical Models
v.1.7.0
|
Here we introduce the application of the DGM library to some well-known probabilistic models. Particaulary, we show how to compose graphical models with the help of DirectGraphicalModels::CGraphPairwise class. We fill the model by hand with potentials and study inferece and decoding processes on them. First we demonstrate brute-force algorithms for exact decoding and inference on a small graph, and consider a possible use of marginal probabilities calculated by inference algorithm for approximate decoding. Next we show message-passing algorithms for approximate inference, and consider the difference between sum-product and max-sum approaches. Finally, we consider sum-product message-passing algorithms, which provide an efficient framework for exact inference in chain- and tree-structuresd graphs.