Direct Graphical Models  v.1.7.0
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 1234]
 NDirectGraphicalModels
 Nfex
 Nvis
 CCBaseRandomModelBase abstract class for random model training
 CCCMatConfusion matrix class
 CCDecodeBase abstract class for random model decoding
 CCDecodeExactExact decoding class
 CCDiffFeaturesConcatenatorDifference features concatenator class
 CCEdgeModelPottsPotts Edge Model for dense graphical models
 CCFeaturesConcatenatorFeatures concatenator base abstract class
 CCGraphInterface class for graphical models
 CCGraph3Triple graph class
 CCGraphDenseFully-connected (dense) graph class
 CCGraphDenseExtExtended Dense graph class for 2D image classifaction
 CCGraphDenseKitKit class for constructing Dense Graph objects
 CCGraphExtGeneral graph extension abstract class for 2D image classifaction
 CCGraphKitAbstract Kit class for constructing Graph-related objects
 CCGraphLayeredExtExtended Pairwise Layered graph class
 CCGraphPairwisePairwise graph class
 CCGraphPairwiseExtExtended Pairwise graph class for 2D image classifaction
 CCGraphPairwiseKitKit class for constructing Pairwise Graph objects
 CCGraphWeissPairwise graph class
 CCInferBase abstract class for random model inference
 CCInferChainInference for chain graphs
 CCInferDenseDense Inference for Dense CRF
 CCInferExactExact inference class
 CCInferLBPSum product Loopy Belief Propagation inference class
 CCInferTreeInference for tree graphs (undirected graphs without loops)
 CCInferTRWTree-reweighted inference class
 CCInferViterbiMax product Viterbi inference class
 CCKDGaussMultivariate Gaussian distribution class
 CCKDNodeK-D Node class for the k-D Tree data structure
 CCKDTreeClass implementing k-D Tree data structure
 CCMessagePassingAbstract base class for message passing inference algorithmes
 CCPDFGaussianGaissian-based PDF class
 CCPDFHistogramHistogram-based PDF class (1D)
 CCPDFHistogram2DHistogram-based PDF class (2D)
 CCPowellThe Powell search method class
 CCPriorBase abstract class for prior probability estimation
 CCPriorEdgeEdge prior probability estimation class
 CCPriorNodeNode prior probability estimation class
 CCPriorTripletTriplet prior probability estimation class
 CCSamplesAccumulatorSamples accumulator abstract class
 CCSimpleFeaturesConcatenatorSimple features concatenator class
 CCTrainEdgeBase abstract class for edge potentials training
 CCTrainEdgeConcatConcatenated edge training class
 CCTrainEdgePottsPotts edge training class
 CCTrainEdgePottsCSContrast-Sensitive Potts training class
 CCTrainEdgePriorContrast-Sensitive Potts training with edge prior probability class
 CCTrainLinkBase abstract class for link (inter-layer edge) potentials training
 CCTrainLinkNestedNested link (inter-layer edge) training class
 CCTrainNodeBase abstract class for node potentials training
 CCTrainNodeBayesBayes training class
 CCTrainNodeCvANNOpenCV Artificial neural network training class
 CCTrainNodeCvGMOpenCV Gaussian Model training class
 CCTrainNodeCvGMMOpenCV Gaussian Mixture Model training class
 CCTrainNodeCvKNNOpenCV Nearest Neighbor training class
 CCTrainNodeCvRFOpenCV Random Forest training class
 CCTrainNodeCvSVMOpenCV Support Vector Machines training class
 CCTrainNodeGMGaussian Model training class
 CCTrainNodeGMMGaussian Mixture Model training class
 CCTrainNodeKNNNearest Neighbor training class
 CCTrainNodeMsRFMicrosoft Sherwood Random Forest training class
 CCTrainTripletBase abstract class for triplet potential training
 CEdgeEdge structure
 CIEdgeModelInterface class for edge models used in dense graphical models
 CIGraphPairwiseInterface class for graphical models
 CIPDFInterface class for Probability Density Function (PDF)
 CITrainInterface class for random model training
 CNodeNode structure
 CTrainNodeCvANNParamsOpenCV Artificial neural network parameters
 CTrainNodeCvGMMParamsOpenCV Random Forest parameters
 CTrainNodeCvKNNParamsOpenCV k-Nearest Neighbors parameters
 CTrainNodeCvRFParamsOpenCV Random Forest parameters
 CTrainNodeCvSVMParamsOpenCV Support Vector machine parameters
 CTrainNodeGMMParamsGaussian Mixture Model parameters
 CTrainNodeKNNParamsK-Nearest Neighbors parameters
 CTrainNodeMsRFParamsMicrosoft Research Random Forest parameters
 CTripletTriplet structure
 NMicrosoftResearch
 NCambridge