![]() |
Direct Graphical Models
v.1.7.0
|
▼CDirectGraphicalModels::CBaseRandomModel | Base abstract class for random model training |
▼CDirectGraphicalModels::CPrior | Base abstract class for prior probability estimation |
▶CDirectGraphicalModels::CPriorEdge | Edge prior probability estimation class |
▶CDirectGraphicalModels::CPriorNode | Node prior probability estimation class |
▶CDirectGraphicalModels::CPriorTriplet | Triplet prior probability estimation class |
▼CDirectGraphicalModels::IPDF | Interface class for Probability Density Function (PDF) |
CDirectGraphicalModels::CPDFGaussian | Gaissian-based PDF class |
CDirectGraphicalModels::CPDFHistogram | Histogram-based PDF class (1D) |
CDirectGraphicalModels::CPDFHistogram2D | Histogram-based PDF class (2D) |
▼CDirectGraphicalModels::ITrain | Interface class for random model training |
▶CDirectGraphicalModels::CTrainEdge | Base abstract class for edge potentials training |
▶CDirectGraphicalModels::CTrainLink | Base abstract class for link (inter-layer edge) potentials training |
▶CDirectGraphicalModels::CTrainNode | Base abstract class for node potentials training |
CDirectGraphicalModels::CTrainTriplet | Base abstract class for triplet potential training |
CDirectGraphicalModels::CCMat | Confusion matrix class |
▼CDirectGraphicalModels::CDecode | Base abstract class for random model decoding |
▼CDirectGraphicalModels::CDecodeExact | Exact decoding class |
CDirectGraphicalModels::CInferExact | Exact inference class |
▼CDirectGraphicalModels::CFeaturesConcatenator | Features concatenator base abstract class |
CDirectGraphicalModels::CDiffFeaturesConcatenator | Difference features concatenator class |
CDirectGraphicalModels::CSimpleFeaturesConcatenator | Simple features concatenator class |
▼CDirectGraphicalModels::CGraph | Interface class for graphical models |
CDirectGraphicalModels::CGraphDense | Fully-connected (dense) graph class |
▼CDirectGraphicalModels::IGraphPairwise | Interface class for graphical models |
▶CDirectGraphicalModels::CGraphPairwise | Pairwise graph class |
CDirectGraphicalModels::CGraphWeiss | Pairwise graph class |
▼CDirectGraphicalModels::CGraphExt | General graph extension abstract class for 2D image classifaction |
CDirectGraphicalModels::CGraphDenseExt | Extended Dense graph class for 2D image classifaction |
CDirectGraphicalModels::CGraphLayeredExt | Extended Pairwise Layered graph class |
CDirectGraphicalModels::CGraphPairwiseExt | Extended Pairwise graph class for 2D image classifaction |
▼CDirectGraphicalModels::CGraphKit | Abstract Kit class for constructing Graph-related objects |
CDirectGraphicalModels::CGraphDenseKit | Kit class for constructing Dense Graph objects |
CDirectGraphicalModels::CGraphPairwiseKit | Kit class for constructing Pairwise Graph objects |
▼CDirectGraphicalModels::CInfer | Base abstract class for random model inference |
CDirectGraphicalModels::CInferDense | Dense Inference for Dense CRF |
CDirectGraphicalModels::CInferExact | Exact inference class |
▼CDirectGraphicalModels::CMessagePassing | Abstract base class for message passing inference algorithmes |
CDirectGraphicalModels::CInferChain | Inference for chain graphs |
▶CDirectGraphicalModels::CInferLBP | Sum product Loopy Belief Propagation inference class |
CDirectGraphicalModels::CInferTree | Inference for tree graphs (undirected graphs without loops) |
CDirectGraphicalModels::CInferTRW | Tree-reweighted inference class |
CDirectGraphicalModels::CKDGauss | Multivariate Gaussian distribution class |
CDirectGraphicalModels::CKDTree | Class implementing k-D Tree data structure |
▼CDirectGraphicalModels::vis::CMarker | Marker class |
CDirectGraphicalModels::vis::CMarkerHistogram | Histogram Marker class |
CDirectGraphicalModels::CPowell | The Powell search method class |
CDirectGraphicalModels::CSamplesAccumulator | Samples accumulator abstract class |
▼CDirectGraphicalModels::fex::CSparseDictionary | Sparse Dictionary Learning class |
CDirectGraphicalModels::fex::CSparseCoding | Sparse Coding feature extraction class |
▼CDirectGraphicalModels::vis::CTrackballCamera | Trackball camera class |
CDirectGraphicalModels::vis::CCameraControl | Trackball camera control class |
CDirectGraphicalModels::Edge | Edge structure |
CDirectGraphicalModels::CGraphWeiss::Edge | Edge structure |
▼Cenable_shared_from_this | |
CDirectGraphicalModels::CKDNode | K-D Node class for the k-D Tree data structure |
CMicrosoftResearch::Cambridge::Sherwood::Forest< F, S > | |
CMicrosoftResearch::Cambridge::Sherwood::Forest< sw::LinearFeatureResponse, sw::HistogramAggregator > | |
▼CDirectGraphicalModels::IEdgeModel | Interface class for edge models used in dense graphical models |
CDirectGraphicalModels::CEdgeModelPotts | Potts Edge Model for dense graphical models |
▼CDirectGraphicalModels::fex::IFeatureExtractor | Interface class for feature extraction algorithms |
CDirectGraphicalModels::fex::CGlobalFeatureExtractor | Interface class for global feature extraction algorithms |
▼CDirectGraphicalModels::fex::ILocalFeatureExtractor | Interface class for local feature extraction algorithms |
CDirectGraphicalModels::fex::CCommonFeatureExtractor | Common class, which unites feature extraction algorithms |
CDirectGraphicalModels::fex::CCoordinate | Coordinate feature extraction class |
CDirectGraphicalModels::fex::CDistance | Distance feature extraction class |
CDirectGraphicalModels::fex::CGradient | Gradient feature extraction class |
CDirectGraphicalModels::fex::CHOG | HOG (histogram of oriented gradients) feature extraction class |
CDirectGraphicalModels::fex::CHSV | Hue, Saturation and Value feature extraction class |
CDirectGraphicalModels::fex::CIntensity | Intensity feature extraction class |
CDirectGraphicalModels::fex::CNDVI | NDVI (normalized difference vegetation index) feature extraction class |
CDirectGraphicalModels::fex::CScale | Scale feature extraction class |
CDirectGraphicalModels::fex::CSIFT | SIFT (scale-invariant feature transform) feature extraction class |
CDirectGraphicalModels::fex::CSparseCoding | Sparse Coding feature extraction class |
CDirectGraphicalModels::fex::CVariance | Variance feature extraction class |
CDirectGraphicalModels::Node | Node structure |
CDirectGraphicalModels::CGraphWeiss::Node | Node structure |
CDirectGraphicalModels::fex::SqNeighbourhood | Square neighborhood structure |
CDirectGraphicalModels::TrainNodeCvANNParams | OpenCV Artificial neural network parameters |
CDirectGraphicalModels::TrainNodeCvGMMParams | OpenCV Random Forest parameters |
CDirectGraphicalModels::TrainNodeCvKNNParams | OpenCV k-Nearest Neighbors parameters |
CDirectGraphicalModels::TrainNodeCvRFParams | OpenCV Random Forest parameters |
CDirectGraphicalModels::TrainNodeCvSVMParams | OpenCV Support Vector machine parameters |
CDirectGraphicalModels::TrainNodeGMMParams | Gaussian Mixture Model parameters |
CDirectGraphicalModels::TrainNodeKNNParams | K-Nearest Neighbors parameters |
CDirectGraphicalModels::TrainNodeMsRFParams | Microsoft Research Random Forest parameters |
CDirectGraphicalModels::Triplet | Triplet structure |